Action-Based Discretization for AI Search

نویسنده

  • Todd W. Neller
چکیده

As computer gaming reaches ever-greater heights in realism, we can expect the complexity of simulated dynamics to reach further as well. To populate such gaming environments with agents that behave intelligently, there must be some means of reasoning about the consequences of agent actions. Such ability to seek out the ramifications of various possible action sequences, commonly called “lookahead”, is found in programs that play chess, but there are special challenges that face game programmers who wish to apply AI search techniques to complex continuous dynamical systems. In particular, the game programmer must “discretize” the problem, that is, approximate the continuous problem as a discrete problem suitable for an AI search algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Action Timing Discretization with Iterative-Refinement

Artificial Intelligence search algorithms search discrete systems. To apply such algorithms to continuous systems, such systems must first be discretized, i.e. approximated as discrete systems. Action-based discretization requires that both action parameters and action timing be discretized. We focus on the problem of action timing discretization. After describing an -admissible variant of Korf...

متن کامل

Automatic Discretization of Actions and States in Monte-Carlo Tree Search

While Monte Carlo Tree Search (MCTS) represented a revolution in game related AI research, it is currently unfit for tasks that deal with continuous actions and (often as a consequence) game-states. Recent applications of MCTS to quasi continuous games such as no-limit Poker variants have circumvented this problem by discretizing the action or the statespace. We present Tree Learning Search (TL...

متن کامل

Hierarchical Portfolio Search: Prismata's Robust AI Architecture for Games with Large Search Spaces

Online strategy video games offer several unique challenges to the field of AI research. Due to their large state and action spaces, existing search algorithms have difficulties in making strategically strong decisions. Additionally, the nature of competitive on-line video games adds the requirement that game designers be able to tweak game properties regularly when strategic imbalances are fou...

متن کامل

A FUZZY MINIMUM RISK MODEL FOR THE RAILWAY TRANSPORTATION PLANNING PROBLEM

The railway transportation planning under the fuzzy environment is investigated in this paper. As a main result, a new modeling method, called minimum risk chance-constrained model, is presented based on the credibility measure. For the convenience ofs olving the mathematical model, the crisp equivalents ofc hance functions are analyzed under the condition that the involved fuzzy parameter...

متن کامل

Sample-Based Planning for Continuous Action Markov Decision Processes

In this paper, we present a new algorithm that integrates recent advances in solving continuous bandit problems with sample-based rollout methods for planning in Markov Decision Processes (MDPs). Our algorithm, Hierarchical Optimistic Optimization applied to Trees (HOOT) addresses planning in continuous action MDPs, directing the exploration of the search tree using insights from recent bandit ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002